版权说明 操作指南
首页 > 成果 > 详情

Sensing Intrusion Detection for Automatic Driving System based on Scene Semantic Centroid

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Zhao, Ziqi;Yang, Bin;Shu, Hongfeng;Liu, Qi;Zhang, Kangshuai;...
通讯作者:
Peng, Lei(lei.peng@siat.ac.cn)
作者机构:
[Zhao, Ziqi; Yang, Bin] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
[Zhao, Ziqi; Zhang, Kangshuai; Peng, Lei] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China.
[Shu, Hongfeng; Liu, Qi] Shenzhen SmartC Technol Dev Grp Co Ltd, Shenzhen 518038, Peoples R China.
语种:
英文
关键词:
Sensing intrusion;Sensing intrusion detection;Scene semantic centroid;Scene semantic embedding
期刊:
2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC)
ISSN:
2153-0009
年:
2022
卷:
2022-October
页码:
1075-1081
会议名称:
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
会议论文集名称:
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
会议时间:
08 October 2022
会议地点:
Macau, China
会议主办单位:
[Zhao, Ziqi;Yang, Bin] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.^[Zhao, Ziqi;Zhang, Kangshuai;Peng, Lei] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China.^[Shu, Hongfeng;Liu, Qi] Shenzhen SmartC Technol Dev Grp Co Ltd, Shenzhen 518038, Peoples R China.
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-6654-6881-7
基金类别:
10.13039/501100012166-National Key R&D Program of China (Grant Number: 2020YFB2104300) 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61871210)
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
Sensing intrusion is a new threat to information security of automatic driving system, which employs digital noise like adversarial sample to show sensors fake information, aiming to mislead decision making and eventually achieve the hacker's illegal intention. Unfortunately, it is difficult for most traditional information security techniques to deal with this novel risk. Even if the methods like outlier detection can pick out the abnormal sensing data, they still hardly tell the samples containing adversarial noise. In this paper, a method based on semantic similarity check is proposed to ad...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com