版权说明 操作指南
首页 > 成果 > 详情

Deep reinforcement learning in radiation therapy planning optimization: A comprehensive review

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Can;Guo, Yuqi;Lin, Xinyan;Feng, Xuezhen;Xu, Dachuan;...
通讯作者:
Yang, RJ
作者机构:
[Guo, Yuqi; Xu, Dachuan; Li, Can] Beijing Univ Technol, Inst Operat Res & Informat Engn, Beijing 100124, Peoples R China.
[Lin, Xinyan; Feng, Xuezhen; Yang, Ruijie] Peking Univ Third Hosp, Canc Ctr, Dept Radiat Oncol, Beijing 100191, Peoples R China.
[Lin, Xinyan] Beihang Univ, Sch Phys, Beijing 102206, Peoples R China.
[Feng, Xuezhen] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
通讯机构:
[Yang, RJ ] P
Peking Univ Third Hosp, Canc Ctr, Dept Radiat Oncol, Beijing 100191, Peoples R China.
语种:
英文
关键词:
Deep reinforcement learning;Radiation therapy;Treatment planning
期刊:
Physica Medica
ISSN:
1120-1797
年:
2024
卷:
125
页码:
104498
基金类别:
Beijing Municipal Commission of Science and Technology Collaborative Innovation Project [Z221100003522028]; Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences [2023-JKCS-10]; Beijing Natural Science Foundation [Z230003]
机构署名:
本校为其他机构
院系归属:
核科学技术学院
摘要:
PURPOSE: The formulation and optimization of radiation therapy plans are complex and time-consuming processes that heavily rely on the expertise of medical physicists. Consequently, there is an urgent need for automated optimization methods. Recent advancements in reinforcement learning, particularly deep reinforcement learning (DRL), show great promise for automating radiotherapy planning. This review summarizes the current state of DRL applications in this field, evaluates their effectiveness, and identifies challenges and future directions. METHODS: A systematic search was conducted in Goog...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com