版权说明 操作指南
首页 > 成果 > 详情

Structured-Anomaly Pursuit of Network Traffic via Corruption-Robust Low-Rank Tensor Decomposition

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zeng, Jiuzhen;Yang, Laurence T.;Wang, Chao;Ruan, Yiheng;Zhu, Chenlu
通讯作者:
Yang, LT
作者机构:
[Zeng, Jiuzhen; Ruan, Yiheng; Yang, Laurence T.; Zhu, Chenlu] Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Hubei Key Lab Distributed Syst Secur, Wuhan 430074, Peoples R China.
[Zeng, Jiuzhen; Wang, Chao] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China.
[Yang, Laurence T.] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China.
[Yang, Laurence T.] St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 2W5, Canada.
[Ruan, Yiheng] Hubei Chutian Smart Commun Co Ltd, Wuhan 430074, Peoples R China.
通讯机构:
[Yang, LT ] H
Huazhong Univ Sci & Technol, Hubei Engn Res Ctr Big Data Secur, Sch Cyber Sci & Engn, Hubei Key Lab Distributed Syst Secur, Wuhan 430074, Peoples R China.
Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China.
语种:
英文
关键词:
Network traffic;anomaly pursuit;low-rank decomposition;tensor theories and methods
期刊:
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING
ISSN:
2327-4697
年:
2024
卷:
11
期:
3
页码:
2510-2523
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61932010) National Key R&D Program of China (Grant Number: 2022YFE0138600) Scientific Research Fund of Hunan Provincial Education Department (Grant Number: 20C1619)
机构署名:
本校为其他机构
院系归属:
电气工程学院
摘要:
Accurately pursuing network traffic anomalies is crucial to network maintenance and management. However, existing methods generally focus on detecting uniformly distributed sparse noises and therefore fail to deal with non-uniform or sequential anomalies with effect. In this article, a novel corruption-robust low-rank tensor decomposition (Cr-LTD) method is proposed for accurate and efficient structured-anomaly pursuit even in presence of sparse corruptions. For the intrinsically low-rank network traffic observation, Cr-LTD models it as a three-way tensor and formulates the traffic anomaly pur...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com