版权说明 操作指南
首页 > 成果 > 详情

Saw Blade Wear Identification Based on Data Enhancement and Feature Fusion

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Chengchao;Wang, Xiangjiang;Zeng, Chao
通讯作者:
Wang, XJ
作者机构:
[Wang, Chengchao; Wang, XJ; Wang, Xiangjiang] Univ South China, Coll Mech Engn, Hengyang 421001, Peoples R China.
[Zeng, Chao] Univ South China, Sch Nucl Sci & Technol, Hengyang 421001, Peoples R China.
通讯机构:
[Wang, XJ ] U
Univ South China, Coll Mech Engn, Hengyang 421001, Peoples R China.
语种:
英文
关键词:
Data models;Generative adversarial networks;Convolutional neural networks;Milling;Feature extraction;Monitoring;Training;Predictive control;Aging;Tools;Product safety;Saw blade wear identification;feature fusion;Bayesian optimization algorithm;double-path parallel convolution neural network;generative adversarial networks
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2023
卷:
11
页码:
123677-123687
基金类别:
10.13039/501100004735-Natural Science Foundation of Hunan Province, China (Grant Number: 2023JJ50131)
机构署名:
本校为第一且通讯机构
院系归属:
机械工程学院
核科学技术学院
摘要:
In order to solve the problem of low accuracy of tool wear detection due to the poor quality of generated data under small sample problems, a deep learning model based on data enhancement and feature fusion is proposed. Firstly, in order to solve the problem that there is no quality evaluation standard in the training process of the traditional generative adversarial network (GAN), the K nearest neighbor algorithm is proposed to test the data generated by the GAN model for the second time. The improved GAN model can be automatically trained to get the optimal model according to the second test...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com