版权说明 帮助中心
首页 > 成果 > 详情

基于主成分分析网络的车牌检测方法

CSCD
认领
导出
Link by 中国知网学术期刊 Link by 维普学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
论文标题(英文):
License Plate Detection Based on Principal Component Analysis Network
作者:
钟菲;杨斌
作者机构:
[钟菲; 杨斌] 南华大学电气工程学院, 湖南, 衡阳, 421001
语种:
中文
关键词:
车牌检测;主成分分析网络;特征提取;非极大值抑制算法
期刊:
计算机科学
期刊(英文):
Computer Science
ISSN:
1002-137X
年:
2018
卷:
45
期:
3
页码:
268-273
基金类别:
国家自然科学基金(61102108); 湖南省自然科学基金(2016JJ3106); 湖南省教育厅项目(16B225,YB2013B039); 南华大学青年英才支持计划和南华大学重点学科(NHXK04)资助;
机构署名:
本校为第一机构
院系归属:
电气工程学院
摘要:
车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提高算法的鲁棒性。算法首先采用Sobel算子边缘检测和边缘对称性分析获取车牌候选区域;然后将候选区域输入到主成分分析网络中进行车牌深度特征提取,并利用支持向量机实现对车牌区域的判别;最后采用非极大值抑制算法标记最佳车牌检测区域。利用收集的复杂场景下的车辆图像对所提方法的参数进行分析,并将其与传统方法进行比较。实验结果表明,所提算法的鲁棒性高,性能优于传统的车牌检测方法。
摘要(英文):
License plate recognition is the core technology of intelligent transportation system (ITS).License plate detection is a crucial step in the license plate recognition technology.Since only low-level artificial features are used to achieve license plates detection in most traditional methods,the detection error rates are usually low in complex scenes.In this paper,a novel license plate detection method based on principal component analysis network (PCANet) was proposed.Firstly,the license plate candidate area is marked with Sobel operator based edge detection and edges symmetry analysis.Secondly,by inputting candidate area into PCANet,the deep feature extraction is peformed for candidate area in PCANet and the support vector mechine is used to confirm the license plate.Finally,an efficient non maximum suppression (NMS) is used to label the best license plate detection area.For performance evaluation,a dataset consisting of images in various scenes was used to test the proposed method,and the results were also compared with those of traditional methods.The experimental results show the robustness of the proposed algorithm,and its performance is also superior to the traditional method of license plate detection.

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com